Vagal afferent transmission in the NTS mediating reflex responses of the rat esophagus

نویسنده

  • WEI YANG
چکیده

Lu, Wei Yang, and Detlef Bieger. Vagal afferent transmission in the NTS mediating reflex responses of the rat esophagus. Am. J. Physiol. 274 (Regulatory Integrative Comp. Physiol. 43): R1436–R1445, 1998.—In urethan-anesthetized rats, esophageal distension evoked volume-dependent reflex contractions with phase-locked multiunit discharges in the central subnucleus of the solitary tract complex (NTSC) and the nucleus ambiguus. During blockade of solitarial, but not peripheral, muscarinic cholinoceptors, the volume-response relationship of reflex contractions was shifted rightward with a depression in pressure wave amplitude. Concurrently, premotor NTSC responses were attenuated and nucleus ambiguus activity was abolished during esophagomotor inhibition. Both NTSC discharges and reflex responses were eliminated, or strongly inhibited, during blockade of excitatory amino acid receptors (EAARs) with 6-cyano-7-nitroquinoxaline-2,3-dione, g-glutamylglycine or 2-amino-7-phosphonoheptanoate. In brain stem slice preparations, whole cell recordings in the NTSC region revealed fast excitatory postsynaptic potentials (EPSPs) with spikes in response to electrical stimulation of the solitary tract. Although spiking was facilitated by muscarine, EPSPs were resistant to cholinoceptor antagonists but sensitive to EAAR blockers. We conclude that esophageal vagal afferents excite ipsilateral NTSC interneurons via activation of glutamate receptors of the DL-a-amino3-hydroxy-5-methylisoxazole-propionic acid and N-methyl-Daspartate subtypes. Cholinergic input to the NTSC probably derives from propriobulbar sources and serves to modulate the responsiveness of reflex interneurons.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Vagal afferent transmission in the NTS mediating reflex responses of the rat esophagus.

In urethan-anesthetized rats, esophageal distension evoked volume-dependent reflex contractions with phase-locked multiunit discharges in the central subnucleus of the solitary tract complex (NTSC) and the nucleus ambiguus. During blockade of solitarial, but not peripheral, muscarinic cholinoceptors, the volume-response relationship of reflex contractions was shifted rightward with a depression...

متن کامل

Brainstem circuits regulating gastric function.

Brainstem parasympathetic circuits that modulate digestive functions of the stomach are comprised of afferent vagal fibers, neurons of the nucleus tractus solitarius (NTS), and the efferent fibers originating in the dorsal motor nucleus of the vagus (DMV). A large body of evidence has shown that neuronal communications between the NTS and the DMV are plastic and are regulated by the presence of...

متن کامل

Effect of esophagus distension on gastric blood flow, gastrin and somatostatin secretion in rat

Abstract Introduction: There are many studies about the inhibitory effect of the esophageal distention (ED) on gastric motility. Recently, it has been shown that ED decreases the gastric secretions. It is well established that the inhibitory effect of ED is mediated by activation of vago-vagal inhibitory reflex. However, there is not any investigation about the effect of the reflex on the gast...

متن کامل

Glucose increases synaptic transmission from vagal afferent central nerve terminals via modulation of 5-HT3 receptors.

Acute hyperglycemia has profound effects on vagally mediated gastrointestinal functions. We have reported recently that the release of glutamate from the central terminals of vagal afferent neurons is correlated directly with the extracellular glucose concentration. The present study was designed to test the hypothesis that 5-HT(3) receptors present on vagal afferent nerve terminals are involve...

متن کامل

Non-NMDA and NMDA receptors transmit area postrema input to aortic baroreceptor neurons in NTS.

We sought to determine whether glutamate acting at both N-methyl-d-aspartate (NMDA) and non-NMDA receptors transmits area postrema (AP) excitatory inputs to nucleus tractus solitarii (NTS) neurons in the aortic baroreceptor or vagal afferent pathways in vivo. In α-chloralose-anesthetized rabbits, we recorded extracellular NTS neuronal responses to low-frequency aortic depressor nerve (ADN), vag...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998